Loading [MathJax]/extensions/TeX/newcommand.js

Inverse Z-Transform Table

In this topic, you study the Table of Z-Transform.


Definition: The inverse Z-transform of X[z] is

{x_n} = \frac{1}{{2\pi j}}\oint\limits_C {X[z]{z^{n – 1}}dz}

Using above property, the inverse Z-transform of Basic Functions are

 

X[z] x(n) Region of convergence (ROC)
1 \delta [n] |z| > 1
\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}} {a^n}u[n] |z| > |a|
\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}}  – n{a^n}u[ – n – 1] |z| < |a|
\frac{1}{{1 – {z^{ – 1}}}} u[n] |z| > 1
\frac{1}{{1 – {z^{ – 1}}}} -u[-n-1] |z| < 1
\frac{{z.\sin {\omega _o}}}{{{z^2} – 2z\cos {\omega _o} + 1}} \sin ({\omega _o}n)u[n] |z| > 1
\frac{{z(z – \cos {\omega _o})}}{{{z^2} – 2z\cos {\omega _o} + 1}} \cos ({\omega _o}n)u[n] |z| > 1

 

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!