Properties of Discrete Fourier Transform (DFT)

In this topic, you study the Properties of Discrete Fourier Transform (DFT) as Linearity,  Time Shifting, Frequency Shifting, Time Reversal, Conjugation, Multiplication in Time, and Circular Convolution.


Linearity

if

\[a{x_1}[n]{\text{ }} \leftrightarrow a{X_1}[k]{\text{ }}\]

\[b{x_2}[n]{\text{ }} \leftrightarrow b{X_2}[k]{\text{ }}\]

Then

\[a{x_1}[n] + b{x_2}[n] \leftrightarrow a{X_1}[k] + b{X_2}[k]\]

Read more

Z-Transform Properties

In this topic, you study the Z-Transform Properties as Linearity, Time Scaling, Time Shifting, Multiplication by an Exponential Sequence, Differentiation in z-domain, Time Reversal, and Conjugate symmetry.


Linearity

if

\[a{x_1}[n]{\text{ }} \leftrightarrow a{X_1}[z]{\text{ }}\]

\[b{x_2}[n]{\text{ }} \leftrightarrow b{X_2}[z]{\text{ }}\]

Then

\[a{x_1}[n]{\text{ }}+b{x_2}[n]{\text{ }} \leftrightarrow a{X_1}[z]{\text{ }} + b{X_2}[z]{\text{ }}\]

Read more

Laplace Transform Properties

In this topic, you study the Laplace Transform Properties as Linearity, Time Scaling, Time Shifting, Frequency Shifting, Time differentiation, Time integration, Time Reversal, Convolution in time and Multiplication in time.


Linearity
if

\[a{f_1}(t) \leftrightarrow a{F_1}(s)\]

\[b{f_2}(t) \leftrightarrow b{F_2}(s)\]

Then

\[a{f_1}(t){\text{ }}+{\text{ }}b{f_2}(t) \leftrightarrow a{F_1}(s){\text{ }} + {\text{ }}b{F_2}(s)\]

Read more

error: Content is protected !!