Fourier Transform Properties

In this topic, you study the Fourier Transform Properties as Linearity, Time Scaling, Time Shifting, Frequency Shifting, Time differentiation, Time integration, Frequency differentiation, Time Reversal, Duality, Convolution in time and Convolution in frequency.


Linearity
if

\[a{f_1}(t) \leftrightarrow a{F_1}(\omega )\]

\[b{f_2}(t) \leftrightarrow b{F_2}(\omega )\]

Then

\[a{f_1}(t){\text{ }}+{\text{ }}b{f_2}(t) \leftrightarrow a{F_1}(\omega ){\text{ }} + {\text{ }}b{F_2}(\omega )\]

Time Scaling

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[f(at) \leftrightarrow \frac{1}{{\left| a \right|}}F\left( {\frac{\omega }{a}} \right)\]

Time Shifting

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[f(t – {t_0}) \leftrightarrow F({\omega _0}){e^{ – j\omega {t_0}}}\]

Frequency Shifting

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[f(t){e^{j{\omega _0}t}} \leftrightarrow F(\omega  – {\omega _0})\]

Time differentiation

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[\frac{d}{{dt}}\left[ {f(t)} \right] \leftrightarrow j\omega F(\omega )\]

Time integration

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[\int\limits_{ – \infty }^t {f(\tau )d\tau } \leftrightarrow \frac{1}{{j\omega }}F(\omega )\]

Frequency differentiation

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[{t^n}f(t) \leftrightarrow {(j)^n}\frac{{{d^n}}}{{d{\omega ^n}}}F(\omega )\]

Time Reversal

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[f( – t) \leftrightarrow F( – \omega )\]

Duality

if

\[f(t) \leftrightarrow F(\omega )\]

Then

\[F(t) \leftrightarrow 2\pi f( – \omega )\]

Convolution in time

if

\[{f_1}(t) \leftrightarrow {F_1}(\omega )\]

\[{f_2}(t) \leftrightarrow {F_2}(\omega )\]

Then

\[{f_1}(t)*{f_2}(t) \leftrightarrow {F_1}(\omega ){F_2}(\omega )\]

Convolution in frequency

if

\[{f_1}(t) \leftrightarrow {F_1}(\omega )\]

\[{f_2}(t) \leftrightarrow {F_2}(\omega )\]

Then

\[{f_1}(t){f_2}(t) \leftrightarrow \frac{1}{{2\pi }}\left[ {{F_1}(\omega )*{F_2}(\omega )} \right]\]

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top