Inverse Laplace Transform Table

In this topic, you study the Table of Inverse Laplace Transforms.


Definition: If Laplace transform $L[f(t)]=F(s)$ then inverse Laplace transform ${L^{ – 1}}[F(s)] = f(t)$. Using above property, the inverse Laplace transform of standard forms are

\[{L^{ – 1}}[F(s)]\] \[f(t)\]
\[{L^{ – 1}}\left[ {\frac{1}{s}} \right]\] \[u(t)\]
\[{L^{ – 1}}\left[ {\frac{1}{{{s^2}}}} \right]\] \[t \]
\[{L^{ – 1}}\left[ {\frac{{n!}}{{{s^{n + 1}}}}} \right]\] \[{t^n} \]
\[{L^{ – 1}}\left[ {\frac{1}{{s + a}}} \right]\] \[{e^{ – at}}\]
\[{L^{ – 1}}\left[ {\frac{1}{{s – a}}} \right]\] \[{e^{ at}}\]
\[{L^{ – 1}}\left[ {\frac{a}{{{s^2} + {a^2}}}} \right]\] \[\sin at\]
\[{L^{ – 1}}\left[ {\frac{s}{{{s^2} + {a^2}}}} \right]\] \[\cos at\]
\[{L^{ – 1}}\left[ {\frac{a}{{{s^2} – {a^2}}}} \right]\] \[\sinh at\]
\[{L^{ – 1}}\left[ {\frac{s}{{{s^2} – {a^2}}}} \right]\] \[\cosh at\]

Note:- Defined for $t$ ≥  0, $f(t)$ = 0, for $t$ < 0.

Leave a Comment

error: Content is protected !!