Inverse Z-Transform Table

In this topic, you study the Table of Z-Transform.


Definition: The inverse Z-transform of $X[z]$ is

\[{x_n} = \frac{1}{{2\pi j}}\oint\limits_C {X[z]{z^{n – 1}}dz} \]

Using above property, the inverse Z-transform of Basic Functions are

 

X[z] x(n) Region of convergence (ROC)
\[1\] \[\delta [n] \] \[|z| > 1\]
\[\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}}\] \[{a^n}u[n] \] \[|z| > |a|\]
\[\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}}\] \[ – n{a^n}u[ – n – 1] \] \[|z| < |a|\]
\[\frac{1}{{1 – {z^{ – 1}}}}\] \[u[n] \] \[|z| > 1\]
\[\frac{1}{{1 – {z^{ – 1}}}}\] \[-u[-n-1] \] \[|z| < 1\]
\[\frac{{z.\sin {\omega _o}}}{{{z^2} – 2z\cos {\omega _o} + 1}}\] \[\sin ({\omega _o}n)u[n]\] \[|z| > 1\]
\[\frac{{z(z – \cos {\omega _o})}}{{{z^2} – 2z\cos {\omega _o} + 1}}\] \[\cos ({\omega _o}n)u[n]\] \[|z| > 1\]

 

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top