Laplace Transform Pairs | Laplace Transform of Basic Signals

In this topic, you study the Laplace Transform Pairs of Basic Signals as Decaying Exponential, Impulse function, Cosine function, Sine function, Unit step function, etc.


Sine Function

\[\sin {\omega _0}t.u(t) \rightleftarrows \frac{{{\omega _0}}}{{{s^2} + \omega _0^2}}\]

Region of convergence $\sigma$ :

\[\sigma > 0\]

Cosine Function

\[\cos {\omega _0}t.u(t) \rightleftarrows \frac{{{s}}}{{{s^2} + \omega _0^2}}\]

Region of convergence $\sigma$ :

\[\sigma > 0\]

Unit step Function

\[u(t) \longleftrightarrow \frac{1}{s}\]

Region of convergence $\sigma$ :

\[\sigma > 0\]

Impulse Function

\[\delta (t) \longleftrightarrow 1\]

Region of convergence $\sigma$ :

Entire $s$-plane

Exponential Decaying

\[{e^{ – at}}.u(t) \longleftrightarrow \frac{1}{{s+a}}\]

Region of convergence $\sigma$ :

\[\sigma > -a\]

${t^n}.u(t)$

\[{t^n}.u(t) \rightleftarrows \frac{{n!}}{{{s^{n + 1}}}}\]

Region of convergence $\sigma$ :

\[\sigma > 0\]

Leave a Comment

error: Content is protected !!