Loading [MathJax]/extensions/TeX/newcommand.js

Laplace Transform Table

In this topic, you study the Table of Laplace Transforms.


Definition: Laplace transform of f(t) is

L[f(t)] = F(s) = \int\limits_0^\infty {f(t){e^{ – st}}dt}

Using above property, the Laplace transform of Basic Functions are

L[f(t)] F(s)
L[u(t)] \frac{1}{s}
L[t]  \frac{1}{{{s^2}}}
L[{t^n}] \frac{{n!}}{{{s^{n + 1}}}}
L[{e^{ – at}}] \frac{1}{{s+a}}
L[e^{ at}] \frac{1}{{s-a}}
L[\sin at] \frac{{a}}{{{s^2} + a^2}}
L[\cos at] \frac{{s}}{{{s^2} + a^2}}
L[\sinh at] \frac{{a}}{{{s^2} – a^2}}
L[\cosh at] \frac{{s}}{{{s^2} – a^2}}

Note:- Defined for t ≥  0, f(t) = 0, for t < 0.

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!