Laplace Transform Table

In this topic, you study the Table of Laplace Transforms.


Definition: Laplace transform of $f(t)$ is

\[L[f(t)] = F(s) = \int\limits_0^\infty {f(t){e^{ – st}}dt}\]

Using above property, the Laplace transform of Basic Functions are

\[L[f(t)] \]\[F(s)\]
\[L[u(t)] \]\[ \frac{1}{s} \]
\[L[t] \]\[ \frac{1}{{{s^2}}} \]
\[L[{t^n}] \]\[ \frac{{n!}}{{{s^{n + 1}}}} \]
\[L[{e^{ – at}}] \]\[\frac{1}{{s+a}} \]
\[L[e^{ at}] \]\[\frac{1}{{s-a}} \]
\[L[\sin at] \]\[ \frac{{a}}{{{s^2} + a^2}} \]
\[L[\cos at] \]\[ \frac{{s}}{{{s^2} + a^2}} \]
\[L[\sinh at] \]\[ \frac{{a}}{{{s^2} – a^2}} \]
\[L[\cosh at] \]\[ \frac{{s}}{{{s^2} – a^2}} \]

Note:- Defined for $t$ ≥  0, $f(t)$ = 0, for $t$ < 0.

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top