Properties of Discrete Fourier Transform (DFT)

In this topic, you study the Properties of Discrete Fourier Transform (DFT) as Linearity,  Time Shifting, Frequency Shifting, Time Reversal, Conjugation, Multiplication in Time, and Circular Convolution.


Linearity

if

\[a{x_1}[n]{\text{ }} \leftrightarrow a{X_1}[k]{\text{ }}\]

\[b{x_2}[n]{\text{ }} \leftrightarrow b{X_2}[k]{\text{ }}\]

Then

\[a{x_1}[n] + b{x_2}[n] \leftrightarrow a{X_1}[k] + b{X_2}[k]\]

Time Shifting

if

\[{x}[n]{\text{ }} \leftrightarrow {X}[k]{\text{ }}\]

Then

\[x{[n – {n_0}]_{\bmod N}} \leftrightarrow {e^{ – j\,k{n_0}(2\pi /N)}}X(k)\]

Frequency Shifting

if

\[{x}[n]{\text{ }} \leftrightarrow {X}[k]{\text{ }}\]

Then

\[{e^{j\,{k_0}n(2\pi /N)}}x[n] \leftrightarrow X{[k – {k_0}]_{\bmod N}}\]

Time Reversal

if

\[{x}[n]{\text{ }} \leftrightarrow {X}[k]{\text{ }}\]

Then

\[x{[ – {n_0}]_{\bmod N}} \leftrightarrow X{[{k_0}]_{\bmod N}}\]

Conjugation

if

\[{x}[n]{\text{ }} \leftrightarrow {X}[k]{\text{ }}\]

Then

\[{x^*}[n] \leftrightarrow {X^*}{[ – {k_0}]_{\bmod N}}\]

where * denotes the complex conjugate.

Multlplicatlon in Time

if

\[a{x_1}[n]{\text{ }} \leftrightarrow a{X_1}[k]{\text{ }}\]

\[b{x_2}[n]{\text{ }} \leftrightarrow b{X_2}[k]{\text{ }}\]

Then

\[{x_1}[n]{x_2}[n] \leftrightarrow \frac{1}{N}\left[ {{X_1}[k] \otimes {X_2}[k]} \right]\]

Circular Convolution

if

\[a{x_1}[n]{\text{ }} \leftrightarrow a{X_1}[k]{\text{ }}\]

\[b{x_2}[n]{\text{ }} \leftrightarrow b{X_2}[k]{\text{ }}\]

Then

\[{x_1}[n] \otimes {x_2}[n] \leftrightarrow {X_1}[k]{X_2}[k]\]

 

Leave a Comment

error: Content is protected !!