Z-Transform Table

In this topic, you study the Table of inverse Z-Transform.


Definition: Z-transform of discrete time signal $x[n]$ is

\[X[z] = \sum\limits_{n = – \infty }^\infty {x[n]} {z^{ – n}}\]

Using above property, the Z-transform of Basic Functions are

 

Discrete time signal x[n] Z-transform X[z] Region of convergence (ROC)
\[\delta [n] \] \[1\] \[|z| > 1\]
\[{a^n}u[n] \] \[\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}}\] \[|z| > |a|\]
\[ – n{a^n}u[ – n – 1] \] \[\frac{{a{z^{ – 1}}}}{{{{(1 – {z^{ – 1}})}^2}}}\] \[|z| < |a|\]
\[u[n] \] \[\frac{1}{{1 – {z^{ – 1}}}}\] \[|z| > 1\]
\[-u[-n-1] \] \[\frac{1}{{1 – {z^{ – 1}}}}\] \[|z| < 1\]
\[\sin ({\omega _o}n)u[n]\] \[\frac{{z.\sin {\omega _o}}}{{{z^2} – 2z\cos {\omega _o} + 1}}\] \[|z| > 1\]
\[\cos ({\omega _o}n)u[n]\] \[\frac{{z(z – \cos {\omega _o})}}{{{z^2} – 2z\cos {\omega _o} + 1}}\] \[|z| > 1\]

 

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top