Linear and Nonlinear Systems – Theory | Solved Examples

In this topic, you study the Linear and Nonlinear Systems theory, definition & solved examples.


Linear System

A system is called linear if it satisfies two properties

(i) Additivity

(ii) Homogeneity

Additivity

If an input $x_1(t)$ produces output $y_1(t)$ and another input $x_2(t)$ also acting along produces output $y_2(t)$, then, when both inputs acting on the system simultaneously, produces output $y_1(t) + y_2(t)$. Mathematically,

If

\[{x_1}(t)\xrightarrow{{system}}{y_1}(t)\]

and

\[{x_2}(t)\xrightarrow{{system}}{y_2}(t)\]

then

\[{x_1}(t) + {x_1}(t)\xrightarrow{{system}}{y_1}(t) + {y_2}(t)\]

Homogeneity

It states that if input is scaled by any scalar $k$, then output also scaled by the same amount.

If

\[x(t)\xrightarrow{{system}}y(t)\]

then

\[k \cdot x(t)\xrightarrow{{system}}k \cdot y(t)\]

Nonlinear System

Any system is called nonlinear that does not satisfy two properties

(i) Additivity

(ii) Homogeneity

Example : Determine whether or not each of the following systems are linear  with input $x(t)$ and output $y(t)$.

(i) \[y(t) = ax(t) + b\]

(ii) \[y(t) = xsin(t)\]

Solution : (i)  \[y(t) = ax(t) + b\]

Additivity

\[{y_1}(t) + {y_2}(t) = a{x_1}(t) + b + a{x_2}(t) + b\]

\[y(t) = a{x_1}(t) + a{x_2}(t) + b\]

\[y(t) \ne {y_1}(t) + {y_2}(t)\]

hence the system is Nonlinear.

Solution : (ii)  \[y(t) = xsin(t)\]

Additibity

\[{y_1}(t) + {y_2}(t) = {x_1}sin(t) + {x_2}sin(t)\]

\[y(t) = {x_1}sin(t) + {x_2}sin(t)\]

\[y(t) = {y_1}(t) + {y_2}(t)\]

Homogeneity

\[k \cdot y(t) = k \cdot xsin(t)\]

\[k \cdot x(t) = k \cdot xsin(t)\]

so

\[k \cdot y(t) = k \cdot x(t)\]

hence the system is Linear.

Leave a Comment

error: Content is protected !!