Design of Gray to Binary Code Converter Circuit

In this topic, you study how to design Gray to Binary Code Converter Circuit and draw the logic diagram.


Truth table

The conversion of 4-bit input Gray code (A B C D) into the Binary code output (W X Y Z) as shown in truth table 1. The 4-bit input so 16 (${2^4}$) combinations are possible and all of them are valid so no don’t care condition.

Table 1: Gray to Binary Code Code Converter.

Gray Code (Input)  Binary Code (Output)
A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

Drawing of K-map for each output

From this truth table, the K-maps are drawing shown in Figure 1, to obtain a minimized expression for each output.

Gray to Binary Code Converter k-map 1

(a) k-map for W

Gray to Binary Code Converter k-map 2

(b) k-map for X

Gray to Binary Code Converter k-map 4

(c) k-map for Y

Gray to Binary Code Converter k-map 3

(d) k-map for Z

Figure 1: k-maps for Gray to Binary Code Converter.

Minimized Expression for each output

The minimized expression for each output obtained from the K-map are given below as

$W = A$

$X = \bar A B + A \bar B = A \oplus B $

$Y=\bar{A}\bar{B}C+\bar{A}B\bar{C}+ABC$

$+A\bar{B}\bar{C}$

$=A\oplus B\oplus C$

$Y = X \oplus C$

$Z = \bar A\bar B\bar CD + \bar A\bar BC\bar D + \bar AB\bar C\bar D $

$+\bar{A}BCD\text{ }\!\!~\!\!\text{ }+AB\bar{C}D+ABC\bar{D}$

$+A\bar{B}\bar{C}\bar{D}+A\bar{B}CD$

$Z=A\oplus B\oplus C\oplus D$

$Z = Y \oplus D$

Logic Circuit Diagram

Based on the above given minimized expression for each output, a logic circuit can be drawn as shown in Figure 2.

Gray to Binary Converter logic diagram

Figure 2: Gray to Binary Code Converter logic diagram.

Leave a Comment

error: Content is protected !!